Linearizability of Systems of Ordinary Differential Equations Obtained by Complex Symmetry Analysis
نویسندگان
چکیده
Five equivalence classes had been found for systems of two second-order ordinary differential equations, transformable to linear equations linearizable systems by a change of variables. An “optimal or simplest canonical form” of linear systems had been established to obtain the symmetry structure, namely, with 5-, 6-, 7-, 8-, and 15-dimensional Lie algebras. For those systems that arise from a scalar complex second-order ordinary differential equation, treated as a pair of real ordinary differential equations, we provide a “reduced optimal canonical form.” This form yields three of the five equivalence classes of linearizable systems of two dimensions. We show that there exist 6-, 7-, and 15-dimensional algebras for these systems and illustrate our results with examples.
منابع مشابه
Inequivalence of Classes of Linearizable Systems of Second Order Ordinary Differential Equations Obtained by Real and Complex Symmetry Analysis
Linearizability criteria for systems of two cubically semi-linear second order ordinary differential equations (ODEs) were obtained by geometric means using real symmetry analysis (RSA). Separately, complex symmetry analysis (CSA) was developed to provide means to discuss systems of two ODEs. It was shown that CSA provides a class of linearizable systems of two cubically semi-linear ODEs. Linea...
متن کاملN ov 2 00 7 Use of Complex Lie Symmetries for Linearization of Systems of Differential Equations - I : Ordinary Differential Equations
The Lie linearizability criteria are extended to complex functions for complex ordinary differential equations. The linearizability of complex ordinary differential equations is used to study the linearizability of corresponding systems of two real ordinary differential equations. The transformations that map a system of two nonlinear ordinary differential equations into systems of linear ordin...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کامل0 N ov 2 00 7 Use of Complex Lie Symmetries for Linearization of Systems of Differential Equations - II : Partial Differential Equations
The linearization of complex ordinary differential equations is studied by extending Lie’s criteria for linearizability to complex functions of complex variables. It is shown that the linearization of complex ordinary differential equations implies the linearizability of systems of partial differential equations corresponding to those complex ordinary differential equations. The invertible comp...
متن کاملDifferential transform method for a a nonlinear system of differential equations arising in HIV infection of CD4+T cell
In this paper, differential transform method (DTM) is described and is applied to solve systems of nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity of the solution will be extended by using Pade approximation. The results also will be compared with those results obtained by Runge-Kutta method. The technique is described and is illustrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014